Foolproof circuit troubleshooting and validation

Dean Belcher is the master electrician for Sunbelt Construction, a small, family-owned remodeling and construction company headquartered in El Paso, Texas. He explains that his father owns the company, which employs 15 to 20 people. The work they do is primarily on residential structures from California to Mississippi and as far north as Colorado. What Belcher wants to share with his fellow electricians is how he uses a Fluke 1653 Multifunction Installation Tester to troubleshoot and validate circuits.

Tool: Fluke 1653 Installation Tester

Profile: Sunbelt Construction, (residential) master electrician

Measurements: Voltage drop/loop impedance, line-to-neutral, line-to-ground, insulation resistance, installation validation

Dean Belcher, master electrician at Sunbelt Construction, downloading installation verification data from the Fluke 1653 tester.

Acquiring the instrument

Belcher had seen information about using Fluke 1650 Series installation testers to perform loop impedance tests on circuits. (See the box, “Fluke 1650 Series capabilities.”) While these instruments are made principally for European electricians and designed to perform tests mandated by European regulations, Belcher immediately saw how his own work would benefit from loop impedance testing, which is another way of looking at what American electricians typically call voltage drop.

Using an instrument designed principally for European electricians, one Texas electrician saves time by performing loop impedance and insulation resistance testing on old and new electrical circuits.
Belcher says that the greatest benefit he achieves with the installation tester is in diagnosing grounding problems. For example, with receptacles a line-to-ground test can reveal how long it will take a fault-to-ground to trip the breaker. “I want to know if the ground is sufficient,” Belcher says. “Is it going to take 30 milliseconds for the breaker to trip when it should take one millisecond?”

“When a computer is plugged into a receptacle, for example, you want to be sure that you have a good ground back to the panel. And if someone gets shocked in a bathroom, you don’t want it to take a long time for that breaker to trip. You want it to happen instantaneously,” Belcher emphasizes.

Insulation resistance testing – a bonus

All the meters in the Fluke 1650 Series provide insulation resistance testing in which a higher-than-usual-working-level dc voltage is introduced into a de-energized circuit. Such testing is used on motor windings, motor cables, transformers, switchgear and residential and commercial buildings. The goal is to test the integrity of the insulation surrounding the conductors for potential leakage and arcing. Insulation resistance tests on new installations protect against incorrect wiring methods and flawed equipment, while protecting property from fires and people from electric shocks. As a preventive maintenance procedure, insulation testing can serve to spot deterioration of insulation before it leads to system failures or endangers people or property.

The dc voltages available for insulation testing using 1650 Series instruments are limited, with the 1653 having the broadest range and largest number of available voltages,
but there are more versatile instruments available for these kinds of tests. Nevertheless, having this capability on an instrument geared to electricians rather than maintenance technicians means that electricians gain new access to a test that can further ensure the integrity of their installations and retrofits. That was precisely the case with Dean Belcher.

“Tipped off to this problem by his 1653 tester, Belcher worked all the way back to the main panel and the meter and found two bad connections: one where the grounding electrode conductor attaches to the ground rod, and one in the housing for the electric company’s meter. When these connections were repaired, Belcher retested the circuits. This time the readings were nominal.

“We had two problems,” the master electrician reiterates. “Without the meter, I would not have known that. I would have replaced the receptacles and wire and walked off the job. The 1653 told me that we had problems.”

Data storage

Asked whether he uses the data storage capacity of the 1653 Multifunction Installation Tester, Dean Belcher answers in the affirmative. He says that he “saves a whole house” in the instrument, describing a process by which each room and its receptacles are individually identified. When he gets back to his office, he downloads the data into his computer and using software available from Fluke called FlukeView® Forms, he gets a readout of volts, amps and impedance for each point on each circuit where he took a reading. “If we have problems at that site again, the data will help,” Belcher says. “I have an earlier report, and I can see what has changed since the time we did the earlier work.”

“The meter and the backup data are safety nets,” Belcher explains. “I did the home in Mississippi, and I walked away with confidence that every panel and receptacle was up to its optimum condition. Now, I’m 1,500 miles away and have that peace of mind that everything was taken care of correctly. No callbacks represent a major advantage of using that meter.”

Another use – pre-sale home inspections

In the El Paso area, Belcher has used the Fluke 1653 to inspect the electrical systems of homes before they were sold. In fact, he recommends that home inspectors consider acquiring and using the meter, although he does note that these inspec-
itors will require time to learn how to use it effectively. His point is that the 1653 is a vast improvement over the simple test lights most home inspectors use to test receptacles, and that it does an outstanding job of analysis on entire electrical systems.

One example Belcher uses to prove his point is the case of the failing toaster. A woman purchased a house following a typical home inspection. When she plugged her toaster into a kitchen receptacle and turned it on, the toaster glowed briefly and then shut off. A test light had shown and continued to show that the receptacle had been wired correctly. Belcher applied his 1653 to the task.

The problem turned out to be a loose and incorrectly wired connection on the neutral. The neutral was actually connected to the ground wire, but it was a poor connection. So, there was enough “bleeding” to allow a low impedance test light to show a positive test and the toaster to briefly glow when turned on. Of course, the faulty wiring job could not support the full load of the toaster. The 1653 revealed specifically what the problem was, and even identified it by an error code that can be referenced on an error code sheet that accompanies the meter.

Dean Belcher, master electrician, says that he would recommend the meter to any journeyman or electrical contractor. “I work on the premise that I must be my own inspector,” he says. “I don’t want to rely on somebody else to tell me that my electrical work is good. Until recently, the only way I could do that was to take extra care in making my electrical connections. Now, the Fluke 1653 puts uncertainty to rest.”

Of course, these multifunction installation testers do not eliminate all human errors. Bad connections and faulty wiring schemes will always be with us, but these meters will pinpoint them in new construction and uncover developing problems in older installations.

Fluke 1650 Series capabilities

Of the three models of Fluke 1650 Series Multifunction Installation Testers, the 1653 has the most features, but all three perform continuity, loop impedance and insulation resistance testing. All three also perform RCD (Residual Current Device) tripping tests. An RCD is a circuit breaker similar to the American and Canadian GFI that detects current imbalance but does not provide overcurrent protection. Of special interest to electricians in the U.S. and Canada are these meters’ capabilities to perform loop impedance and insulation resistance testing. Also of use to North American electricians are the 1653’s built-in memory and interface capabilities.

Loop impedance testing or branch circuit loop testing checks circuits for high impedance by placing an electrical load on an already powered circuit. The test is especially useful for pinpointing problems in the middle of a circuit by checking where in the loop impedance goes from high to low.

Insulation resistance testing consists of the application of a relatively high but controlled dc voltage but limited current to a de-energized circuit. This combination reveals any areas in a conductor’s insulation where leakage or arcing might occur without further damaging deteriorating insulation or exposing the operator to potentially dangerous current levels.

The built-in memory and interface capabilities of the Model 1653 Installation Tester help electricians and electrical contractors meet reporting and documentation requirements. The meter stores as many as 500 readings, which can be downloaded into a computer. There, with the help of FlukeView Forms software, a contractor can document, store and analyze individual readings or a series of measurements and, if required, convert them into polished reports.